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A THEORY OF SECANT PRECONDITIONERS 

JOSE MARIO MARTINEZ 

ABSTRACT. In this paper we analyze the use of structured quasi-Newton for- 
mulae as preconditioners of iterative linear methods when the inexact-Newton 
approach is employed for solving nonlinear systems of equations. We prove 
that superlinear convergence and bounded work per iteration is obtained if the 
preconditioners satisfy a Dennis-More condition. We develop a theory of Least- 
Change Secant Update preconditioners and we present an application concern- 
ing a structured BFGS preconditioner. 

1. INTRODUCTION 

Newton's method is the best-known algorithm for solving nonlinear systems 
of equations 

(1.1) F(x) = O, 
where F: RI -* RI is differentiable (see [11, 32, 33, 39]). We denote J(x) 
F'(x). At each iteration of this method, the linear system 

(1.2) J(Xk)Sk = -F(Xk) 

is solved, and the new approximation to the solution of (1.1) is defined by 

(1.3) Xk+1 = Xk +Sk - 

Under suitable assumptions, Newton's method is locally and quadratically 
convergent to isolated solutions of (1.1). Because of this property, the Newton 
method is the most suitable algorithm for many practical problems. 

The linear system (1.2) is usually solved employing LU or QR factoriza- 
tions (see [16, 19, etc.]). When n is large and J(x) is sparse, LU techniques 
are preferred (see [17, 20, 15, 45, etc.]), However, for many sparsity patterns 
that appear frequently in applications (e.g., in the discretization of 3-D bound- 
ary value problems) the LU factorization and its variations produce an un- 
acceptable amount of fill-in. Therefore, both the computer time and memory 
requirements that are necessary to solve (1.2) turn out to be very large. In these 
cases it is generally preferred to use an iterative method in order to obtain an 
approximation of the solution of (1.2). The advantage of iterative linear meth- 
ods is that the storage required to implement them is essentially the same as 
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that required to store the data of the problem. Moreover, the computer time 
consumed by a single iteration of most linear iterative methods is negligible 
compared with the computer time used by direct methods. Often, the appli- 
cation to (1.2) of a moderate number of steps of a linear iterative method is 
sufficient to provide satisfactory progress towards the solution of the nonlinear 
system (1.1). For instance, if Xk is not close to a solution of (1.1), it is hardly 
worthwhile to waste a lot of computer time solving accurately (1.2), since we do 
not expect much improvement in the approximation from an accurate solution 
of (1.2). See [35] and [34] for a theoretical analysis of the behavior of Newton's 
method far away from the solution. 

Many authors (see [32, 40] and the references in [6]) analyzed the behav- 
ior of methods based on the application to (1.2) of a predetermined number 
of iterations of some linear iterative method. Ortega and Rheinboldt call al- 
gorithms based on this idea "Generalized Linear Methods". However, only in 
1982, Dembo, Eisenstat, and Steihaug [6] gave a satisfactory answer to the ques- 
tion of deciding when the number of linear iterations executed at the kth step 
of the nonlinear method is sufficient. The algorithms based on their idea are 
called "inexact-Newton methods". 

The Dembo-Eisenstat-Steihaug criterion consists of defining Sk as any incre- 
ment that satisfies 

(1.4) IJ(Xk)Sk + F(xk)I ? OkIF(Xk)l, 

where 0 < Ok < 0 < 1 and I - is some norm on Rn . Under suitable conditions, 
Dembo, Eisenstat, and Steihaug proved that the method defined by (1.4) and 
(1.3) has local linear convergence in an appropriate norm, and that convergence 
is superlinear if liMk- oOok = 0. 

The theory of Dembo, Eisenstat, and Steihaug is useful to analyze cases where 
the equation (1.2) is solved inaccurately for different reasons (see [5]). In this 
work we are concerned with the case where the reason for inaccuracy is the use 
of an iterative linear method. 

In the last 15 years the most widely used iterative methods for solving linear 
systems have been the Conjugate Direction methods (see [21, 18, 19, 44, 13] 
and references therein). Satisfactory practical behavior of these methods for 
solving a general linear system As = b depends, in most cases, on the judicious 
choice of a preconditioning procedure. Roughly speaking, a preconditioning 
technique consists of finding an equivalent linear system A's = b' such that 
the new system is easier to solve than the original one by the iterative linear 
method and the transformation of As = b onto A's = b' is computationally 
cheap. Thus, the idea of most preconditioning methods is to find "cheap ap- 
proximations" to the inverse or to the LU factorization of the matrix (see [19, 
? 10.3], [1]). Frequently, the preconditioning matrix is an incomplete sparse LU 
factorization of A, or is produced by a fixed number of applications of some 
convergent stationary linear iterative method. 

Let us call B-71 the approximation of J((xk)1 used at each iteration of an 
inexact-Newton method for preconditioning the linear system (1.2). We define 
the following "inexact-Newton method with explicit preconditioning": 

Algorithml.1. Given Xo eRn, Boe Rnxn, Ok E (0, 1), k=0, 1,2,... ,the 
steps of a typical iteration of this algorithm are the following: 
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Step 1. Apply a linear iterative method to the system (1.2), using Bk as 
preconditioner. Stop when (1.4) is satisfied. 

Step 2. Define 
Xk+1 = Xk + Sk- 

Step 3. Using Bk, J(Xk+l), F(xk+1), F(xk), Sk and perhaps additional in- 
formation available, compute a new preconditioner Bk+j . 

The key point of Algorithm 1.1 is at Step 3. At this step we compute the 
preconditioner for the new linear system. We observe that information at the 
previous iteration is available and so there is no reason for not using it. In other 
words, the linear systems that must be solved at each iteration of the inexact- 
Newton method are not isolated, and hence useful information can be passed 
between iterations in order to improve the quality of the preconditioner. An 
efficient way to use the previous available information is to use preconditioners 
Bk that satisfy the "secant equation" (see [3, 9, 10, 11, 14, 26, etc.]) 

(1.5) Bk+lSk = Yk, 

where 

(1.6) Yk = F(xk+l) - F(xk). 
Nazareth and Nocedal [31] and Nash [29, 30] were the first in using pre- 

conditioners based on (1.5) in connection with unconstrained minimization 
problems. 

If (1.5) is satisfied, global information on the true Jacobians is incorporated 
in the new preconditioner, by virtue of the identity 

Yk= (J (xk +tsk)dt) Sk. 

This contrasts with the usual approach of preconditioning using only the cur- 
rent Jacobian, that, typically, uses only partial information about J (diagonal 
preconditioners and incomplete LU preconditioners are typical examples of 
this case. See [4]). 

A combined approach is to use classical (incomplete) preconditioners associ- 
ated with least-change secant updates ([1 1, 12, 14, 25]). 

The most natural "combined preconditioners" are "structured least-change 
secant update" matrices in the sense of [14] and [26]. In this case, 

(1.7) Bk = C(Xk) +Ak, 
where C(xk) includes partial information on J(xk), and Ak is updated using 
least-change secant update techniques [11, 14]. Of course, for (1.7) to be use- 
ful as preconditioner, the inversion of Bk must be inexpensive. This can be 
achieved, for example, if C(xk) = Lk Uk, where Lk Uk is an incomplete LU 
factorization of J(xk), and Ak is a low-rank matrix. 

Practical experience showed that some secant update procedures generate 
useful preconditioners for the Newton equation (1.2) (see [29, 30]). The exis- 
tence of powerful convergence theories of secant methods for nonlinear systems 
suggests that a comprehensive theory of secant preconditioners can also be de- 
veloped. Some steps in that direction were made by Martinez [26]. He defined 
a general algorithm in which xk+l is any point that satisfies 

(1.8) NXk+1 -XkI < IxQ - x<N, 
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where 
4N - (x)F(Xk), Xk = Xk - J(Xk ) 1F() 

and xQ is obtained using a least-change secant update (LCSU) procedure. k 
Then, he proved that under the same hypotheses that guarantee the local conver- 
gence of the "pure" LCSU method, the local convergence of the process based 
on (1.8) may also be proved. When the classical Conjugate Gradient Method is 
applied to the problem 

(1.9) MinimizellBr1 [J(Xk)S + F(xk)]112 
S 

starting with so - X k, and generating a sequence {Sk, .. . }, it is well 
known (see [21]) that 

(1.10) IIsJ+1 _ NI112 ? IISj -Sk 112 

for all j = 0, 1, 2, ..., where skj is the exact solution of (1.9). By (1.10), the 
property (1.8) holds for I * I = | | 1K12 if Sk E {SksI, s2,S**}- 

The approach of Martinez [26] has two main drawbacks. First, the condi- 
tion (1.8) restricts the choice of the iterative linear method to algorithms where 
the "norm-decreasing property" (1.10) holds. Unhappily, this property is not 
true for many successful iterative methods such as GMRES ([36, 37]), and it 
also fails to hold if the preconditioning procedure of the classical CG algo- 
rithm involves a change of variables, as it usually does (see Algorithm 10.3.1 in 
[19]). Second, the conditions for local convergence of LCSU methods require 
that the first preconditioner Bo must be close to the Jacobian. If we are using 
an incomplete LU, or a preconditioner based on a stationary linear iterative 
method, this condition can be very restrictive. These difficulties led us to ask 
for the possibility of defining LCSU-preconditioned inexact-Newton methods 
where superlinear convergence is obtained using a bounded number of steps of 
an unspecified linear iterative method at each iteration, and where the assump- 
tion of a good initial Bo is not necessary for proving local convergence. In ?2 
of this paper we prove that we are able to define an algorithm with these char- 
acteristics if the preconditioners satisfy the Dennis-More condition (see [9]), 
and lBk, IB- 1 are bounded. In ?3 we prove that preconditioners which obey 
Martinez's theory with null ideal parameter r* generate algorithms that satisfy 
the conditions given in ?2. So, structured least-change secant update methods 
in the sense of Dennis and Walker can also be used for that purpose (see [27]). 
In ?4 we apply the theory of ?3 to a structured BFGS preconditioner. Some 
conclusions are given in ?5. 

2. PRECONDITIONING WITH THE DENNIS-MORt CONDITION 

When we want to solve a linear system As = b using an iterative linear 
method with the preconditioner B-1 ' A-1, it is natural to begin testing s = 
B- b. This trial point is incorporated in a natural way in the description of 
preconditioned CG algorithms (see, for example, Algorithm 10.3.1 in [19]). 
The algorithm that we present below incorporates explicitly that trial point in 
the inexact-Newton context. 

From now on, I E I denotes a norm on Rn and its subordinate matrix norm. 
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Algorithm 2.1. Let 6k E (0, 6) for all k = 0, 1, 2 ..., O < 0 < t < 1, 
and limkO,0 ok = 0. Assume that xo E Rn is an initial approximation to the 
solution of (1.1) and B0 E R'nn is an initial preconditioner. Given Xk E Rn 
and Bk E RnXn, the steps for obtaining Xk+l, Bk+1, k = 0, 1, 2, ..., are the 
following: 

Step 1. If Bk is nonsingular, compute 

(2.1) SkQ = -gk F(xk). k k 

Else, go to Step 3. 
Step 2. If 

(2.2) IJ(xk)sQ + F(xk)l < OIF(xk)l, 

define 

(2.3) Qk=Sk 

and go to Step 4. 
Step 3. Find an increment Sk such that 

(2.4) IJ(xk)sk + F(xk)l < OktF(xk)l, 

using some iterative method. 
Step 4. Define 

(2.5) Xk+1 = Xk + Sk 

and compute a new preconditioner Bk+1 . 

Clearly, Algorithm 2.1 is a particular case of the inexact-Newton method 
of Dembo, Eisenstat, and Steihaug. So, it is linearly convergent in the norm 
defined by lzl = IJ(x*)zl, under appropriate conditions on F and xo. Let 
us state these assumptions precisely. 

Assumption 1. Assume that F: Q c Rln -* Rn, Q an open and convex set, 
F E C'(Q), x* E Q, J(x*) nonsingular and F(x*) = 0. Assume that there 
exists L> 0 such that, for all x E Q, 

(2.6) IJ(x) - J(x*)l < Llx - x*1. 

Inequality (2.6) implies that for all x, z E Q, 

(2.7) jF(z) -F(x) -J(x*)(z-x)j < Llz-xla(x, z), 

where 

(2.8) a(x, z) = max{lx - x*1, Iz - x* }1. 
(See [3].) 

The following theorem is a trivial consequence of the Theorem 2.3 of Dembo, 
Eisenstat, and Steihaug [6]. 

Theorem 2.1. Suppose that Assumption 1 is satisfied. There exists E > 0 such 
that, if Ixo - x* I < e, the sequence generated by Algorithm 2.1 converges to x* 
and 

(2.9) IXk+1 - x*|* < tlXk - X* * 
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for all k=0, 1,2,..., where 

(2.10) Iz*I = IJ(x*)zl. 
Proof. See [6]. Observe that, in fact, the hypothesis (2.6) can be weakened. 5 

The next two theorems are the main results of this section. We will assume 
that the Bk's satisfy a Dennis-More condition (see [9]). Under this hypothesis 
we will prove that the convergence of Algorithm 2.1 is superlinear. If IBk I and 

IBk 
- 1 are bounded, we prove that, eventually, all the iterations satisfy the test 

(2.2). This means that the number of iterations used by the linear method at 
Step 3 will be bounded, since the increment (2.1) given by the preconditioner 
will be accepted for large enough k. 

Theorem 2.2. Suppose that F satisfies Assumption 1, the sequence (Xk) gener- 
ated by Algorithm 2.1 converges to x* and 

(2.11) lim I [Bk J(X*)]Sk 0. 
k-- oo ISk I 

Then 

(2.12) lim IXk+1X*I 0. 
k--oo 1Xk-X*I 

Proof. We consider two possibilities: 
(i) There exists ko E N such that for all k > ko, the increment Sk is com- 

puted by (2.4) in Algorithm 2.1. 
(ii) For all ko E N, there exists k > ko such that Sk = sQ 
If (i) holds, the algorithm satisfies the conditions of Dembo, Eisenstat, and 

Steihaug for superlinear convergence of the inexact-Newton method, so (2.12) 
is proved. 

Assume then that (ii) is true. Let K1 be the set of indices k such that 
Sk = SQ. Rephrasing the proof of Theorem 2.2 of Dennis and More [9], we 
obtain that 

(2.13) lim IXk+1-xI 0. 
kEK, IXk - x|I 

To prove that 

(2.14) lim IXk+ I-xX* = 0 
k K1 IXk-X*I 

we repeat the arguments in the proof of Theorem 3.3 of [6]. The assertion 

(2.12) follows from (2.13) and (2.14). o 

Theorem 2.3. Suppose that F satisfies Assumption 1 and that the sequence (Xk) 

generated by Algorithm 2.1 converges to x* . Assume that the Dennis-More con- 
dition (2.11) is satisfied and that there exists M > 0 such that 

(2.15) IBk?M, IB-l ?< M 

for all k = 0, 1, 2, . Then there exists ko > 0 such that Sk = SkQ for all 
k > ko, and the convergence is superlinear. 
Proof. The superlinear convergence of (Xk) was proved in Theorem 2.2. By 
(2.6) and the nonsingularity of J(x*), there exist ko E N, a, fl > 0 such that, 
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for all k > ko, 

(2.16) IF(xk+l) I < / IXk+1 -X*I 

and 

(2.17) IF(xk)I > alXk- X*I | 

(See, for example, [12, Lemma 4.1.15].) So, by (2.12), (2.16), and (2.17), 

(2.18) lim IF(xk+l)I < lim flIXk+1 X*I = . 
k-*+oo IF (xk)I k-*oo alxk- x*1 

By the superlinear convergence of (Xk) we have, for large enough k, 

(2.19) ISkl<IXk+1X-*I+xk-X*l< 2IXkX*I<2IF(xk)l. a 

Then, by (2.19) and (2.11), 

(2.20) lim [Bk - J(X*)]Skl < lim 2 l[Bk -J(X*)]SkI = 0. 
k 0o IF(xk)I k oo alSkl 

Moreover, by (2.20), (2.15), (2.17), and (2.18), 

lim l[Bk - J(X*)](Xk - x*)I 
k--+oo IF(Xk) I 

l< im I[Bk - J(X*)]SkI + lim l[Bk - J(X*)](xk+l X)I 

< lim (IBkI + IJ(x*)I) IXFk(X ) I 
k--+co I ( k 

< lim (M+ IJ(x*)) IF(Xk+l)I -0. 
k-*oo a IF(xk)I 

So, by (2.21), (2.7), (2.15), (2.17), and (2.12), 

lim 
I[Bj1 

- 
J(x*)1][F(Xk+l) 

- F(xk)]l 

k- oo IF(Xk) I 

lim 
I[B1 

- 
J(x*)>]J(x*)(xk+l) 

- Xk)I 
k- oo IF(xk)I 

I[Bi1 - J(x*)1'][F(xk+l) -F(xk) - J(x*)(xk+l -Xk)]I 

(2.22) k-+oo IF(Xk) I 

< lim Bk k[J(x*)Bk](xk+l -xk)I 
k- oo IF(xk)I 
+ [M + IJ(x*)l I]LlXk+l -Xk IXk -X*I 

IF(xk)I 
< lim MIl[Bk - J(X*)]Sk I [M + IJ(x*)1 I]Llxk+l -Xkk =0 

k--*oo IF(xk)l a 



688 J. M. MARTINEZ 

Therefore, by (2.15), (2.18), (2.21), and (2.22), 

ur I[B-71 
- 

J(x*>1']F(Xk)I 
k--Xoo IF(Xk)l 

(2.23) < lrn I[Bm 1 - J(x*)1][F(xk+l) - F(Xk)]I 
k--+oo IF(Xk)l 

+ lim[M+ IJ(x*) 1] IF(Xk+l)l = -. +k--*oo IF(xk)l 

Hence, by the continuity of J(x)1 in a neighborhood of x*, 

(rn I[B11 

- J(xk) 

1]F(xk)l 
(2.24) ~~~k--+oo IF(Xk)I- So, by (2.1), (2.24) and the continuity of J(x), 

Ir IJ(Xk)S Q + F(Xk)Il _ IJ(Xk)(-BI1F(Xk)) + F(Xk)I 
(2.25) k-_oo IF(xk)I k- oo IF(xk)I 

r 

IJ(Xk)l I[B1 

J(Xk)1]F(Xk)l _ k--+oo IF(Xk)I By (2.25), there exists ko E N such that for all k > ko, 

I J(xk)sQ + F (Xk)I < (2.26) I(xk)< 

So, the test (2.2) is satisfied for all k > ko. Therefore, for all k > ko, 
Sk = sQ. This completes the proof. o 

3. STRUCTURED LEAST-CHANGE SECANT PRECONDITIONERS 

In ?2 we showed that if IBk I and B- 1B are bounded and Bk satisfies the 
Dennis-More condition (2.11), Algorithm 2.1 is locally and superlinearly con- 
vergent and, eventually, all the iterations are given by 

(3.1) Xk+B = Xk- BkF(Xk)- 

This means that, using the preconditioner Bk, the computer work of an 
inexact-Newton iteration is bounded and superlinear convergence is maintained. 
Moreover, the results above were obtained without the requirement that the 
initial Bo must be close to the Jacobian. 

In this section we will see that preconditioners that satisfy the required prop- 
erties may be obtained using Martinez's approach. A consequence is that the 
least-change secant update methods studied by Dennis and Walker may also be 
used for that purpose (see [27]). 

Let X be a finite-dimensional linear space, F: Q --+ ]RI, Q an open and 
convex set. For all x, z E Q let ( , ), be a scalar product over X, associated 
with the norm 11 II,X Let D c Q x X be an open set and 9: D R Rnx a 
continuous function. For all x, z E Q, let V(x, z) c X be an affine subspace. 
The following algorithm describes an inexact-Newton method preconditioned 
by a structured Least-Change Secant procedure. 
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Algorithm 3.1. Let xo E Q2 be a given initial approximation, Eo e X, ok E 

(O, 0) forall k=0 2, 2..., O< 0 <t< 1 and limk,0Ok=0. Thesteps 
for obtaining xk+l , Ek+1 , k = O, 1, 2,~ ... , are 

Step 1. If (xk, Ek) E D and Bk is nonsingular, where 

(3.2) Bk =((Xk, Ek), 

define 

(3.3) sQ =-B-j1F(xk). k k 

Else, go to Step 3. 
If 

(3.4) IJ(Xk)sQ + F(xk)I < OIF(xk)l, 

define 

(3.5) SkQSk 

and go to Step 4. 
Step 3. Find an increment Sk such that 

(3.6) IJ(xk)sk + F(xk)l < OkIF(Xk)l, 

using some iterative method. 
Step 4. Define 

(3.7) Xk+1 = Xk + Sk- 

Step 5. Compute 

(3.8) Ek+1 = Pk(Ek), 

where Pk is the orthogonal projector on V(xk, xk+?) with respect to 11 IlXkXk+l - 

Clearly, the local linear convergence Theorem 2.1 holds for Algorithm 3.1, 
if F satisfies Assumption 1. Superlinear convergence will be a consequence of 
the following assumptions. 

Assumption 2. Let 11 . 11 be a fixed norm on X associated with the scalar product 
(, ), let E. E X and let cl > 0 be a constant. We assume that for all 
x, z E Q, there exists E = E(x, z) E V(x, z) such that 

(3.9) jjE-E* j < cl?a(x, z), 

where a(x, z) is defined by (2.8). 

Assumption 3. There exists c2 > 0 such that, for all x, z e Q2, E E X, 

(3.10) jIE lxz < [1 + C20(X, z)]jjEjj 

and 

(3.11) hJElI < [1 + C2cY(X, z)]hlElJxz. 
Remark. In Martinez's paper [26] it is assumed that (x*, E*) belongs to the 
domain of (0 and that I - ep(x*, E*)-IJ(x*)I < r* < 1. These assumptions 
will not be necessary to prove the main results of the present work. 
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Lemma 3.1. Let F satisfy Assumption 1, and let V, E*, I . II,,, and 11 . 11 satisfy 
Assumptions 2 and 3. Suppose that the sequence (Xk) generated by Algorithm 
3.1 converges to x* and satisfies 

(3.12) Ixk+1 -x |* < tlXk -XI 1* 
for all k>ko. Then, IlEkil is bounded. 
Proof. By (3.10), we have that 

(3.13) IIEk+1-E* - E [1 + c2a(xk, Xk+1)]IlEk+l - E* Ilk 

for all k = 0, 1, 2,... where 11 * Ilk 11 * Ilxkxk+l 

Now, by (3.12) and the equivalence of norms on In , there exists c* > 0 
such that 

(3.14) a(xk, Xk+1) < c* lxk - x*I 

for all k > ko. Thus, by (3.13) and (3.14), 

(3.15) IIEk+1 -E* |I < (1 + c2Ixk - x* I*) IIEk+1 - E* Ilk 
for all k > ko, where c' = c2c* . 

Let Ek be the orthogonal projection of E* on V(xk, xk+ ), related to the 
norm II *I. By (3.15), 

(3.16) IIEk+1 -E* E| < (1 + c2 xk - x* *)[IIEk+l - Ek Ilk + IEk - E* Ilk] 

for all k > ko. But Ek+1 is the projection of Ek on V(xk, Xk+l), and Ek E 
V(xk, Xk+1). So, 

(3.17) IIEk+1 - EkIlk < IIEk - EkIIk < IIEk - E*lIk + IIEk - E*lIk. 
Hence, by (3.10), (3.14), (3.16), and (3.17), 

(3.18) IIEk+1 - E*II < (1 + c2lxk - x*I*)[IIEk - E*IIk + 2IIEk - E*Ilk] 
< (1 + C2lXk --x**)2[IEk-E*II + 2IIEk - E* I] 

for k > ko. 
Now, by Assumption 2, IIEk - E*II < ClI(Xk, Xk+l). Therefore, by (3.18) 

and (3.14), 

(3. 19) gIIEk+1 -E* 1E < (1 + c2|xk - x*1*)2[IlEk - E*1 + 2cla(xk, Xk+1)] 

< (1 + C29lXkk-X*1*)2[IlEk-E*I + 2clc*lxk-X*I*]. 

Thus, setting d1 = Ixk4 - x* I*, we obtain that there exist C3, C4 > 0 such that 

(3.20) IIEk+1 -E*II < (1 + c3lxk-x*I*)IlEk-E*II + c4lxk-x*I* 
forall k>ko. So, by (3.12), 

(3.21) IIEk+1 - E*II < (1 + c3tk ko dl)IlEk - E*II + c4tk ko di 

for all k > ko. So, by Lemma 3.3 of [9], IIEk - E*11 is bounded, and hence 
IlEklI is bounded. O 

Lemma 3.2. Assume the hypotheses of Lemma 3.1. There exists C5 > 0 such 
that 

(3.22) IIEk+j -E* 11 < IEk-E* 11 + C5 lXk-X* I* 

for all k > ko, j = 1, 2, 3, .... 
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Proof. By Lemma 3.1, there exists d2 > 0 such that 

(3.23) IIEk- EJII < d2 

for all k = 0, 1, 2 . Thus, by (3.20) and (3.23), 

IIEk+j - EJ < (1 + C3IXk- x*I*)IlEk- EJI + c4Ixk-x*1* 

(3.24) < IIEk-E*I + (C3d2 + C4)Ixk-X*I* 

= IIEk-EJII + C6lXk -X*I* 

for all k > ko, where c6 = C3d2 + c4. So, by (3.12) and (3.24), 

j-i 

IIEk+j-E*11 < IlEk-E*II + Zc6lxk+l-x*I* 
1=0 
j-i 

(3.25) < IIEk-E* || + E C6tIXk- * * 
1=0 

j-i 

=IIEk - E* II + C6IXk - x*I* Z ti 
1=0 

< IIEk- EJI + C5IXk -X** 

forall k > ko, j=O, 1, 2, ..., where C5 =c6/(l - t). 5 

Lemma 3.3. Assume the hypotheses of Lemma 3.1. There exists C7 > 0 such 
thatfor all k>ko, j=1, 2, 3,.... 

(3.26) IIEk+j - E*II2 < IlEk - E*II2 + C7IXk - X** 

Proof. Trivial, using (3.22) and the boundedness of IIEk - E*. o 

Theorem 3.1. Assume the hypotheses of Lemma 3.1. Then 

(3.27) lim IIEk+1 - Ekll = 0. 
k- oo 

Proof. This proof reproduces the arguments of the proof of Theorem 3.3 of 
[26], using (3.26) for proving the formula (3.32) of Martinez's paper. o 

Theorem 3.2. Assume the hypotheses of Lemma 3.1. Suppose that there exists a 
closed set G c Rn x X such that (xk, Ek) E G c D for all k = O, 1, 2, 
Then 

(3.28) lim IO(xk+I, Ek+ 1) - q(Xk, Ek)I = 0. 
k- oo 

Proof. Since IIEkil is uniformly bounded and (Xk) is convergent, there exists a 
compact set G' such that (xk, Ek) E G' for all k = 0, 1, 2, .... So, Gn G' c 
D is compact and (a is uniformly continuous in G n G'. Therefore, (3.28) 
follows from (3.27) and from limk ,,o IXk+I - XkI = 0 0 

Theorem 3.3. Let F satisfy Assumption 1 and let V, E*, 11 II,,., and 11 . 11 satisfy 
Assumptions 2 and 3. Suppose that the sequence (Xk) generated by Algorithm 
3.1 converges to x* and satisfies (3.12). Assume that there exists a closed set 
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G c RI x X such that (Xk, Ek) E G c D for all k = 0, 1, 2, ..., Bk is 
nonsingularfor all k = 0, 1, 2, ... and IB-1 I is bounded. Suppose that 

(3.29) lim l[Bk+l 
- 

J(X*)]Skl = 

0I 
k--+oo ISk I 

Then there exists k1 E N such that Sk = sQ for all k > k1, and convergence 
is superlinear. 

Proof. We prove that the hypotheses of Theorem 2.3 are satisfied. 
By (3.29) and (3.28), 

lim I[Bk J(X*)]sk < lim IBk+I - BkI + lim [Bk+l - J(X*)]Skl 0. 
k--+oo ISkI k oo k-4oo ISkI 

So, the Dennis-More condition (2.11) holds here. Now, by Lemma 3.2, there 
exists M > 0 such that IlEkil < M for all k = 0, 1, 2, . Then, for all 
k=O, 1, 2,.... 

Ek E C2={E E G I IEII < M}. 
Now, since (Xk) is convergent, the set {x0, xl, X2, ...} is contained in a 

compact set Cl . Since Cl x C2 is compact and (0 is continuous, (o(x, E) is 
bounded for (x, E) E (C1 x C2) n G. Therefore, IBkl is bounded. Since IB,-1 I 
is bounded by hypothesis, the desired result follows from Theorem 2.3. 0 

Theorem 3.4. Assume the hypotheses of Theorem 3.3 except that instead of (3.29) 
we assume that 

(3.30) Bk+lSk = Yk -F(Xk+ )- F(Xk) 

for all k = O, 1, 2 . Then there exists k1 E N such that Sk = SkQ for all 
k > k1, and convergence is superlinear. 
Proof. By (2.7) the secant equation (3.30) implies (3.29). So, the desired result 
follows from Theorem 3.3. o 

4. AUGMENTED BFGS PRECONDITIONERS 

In this section we consider nonlinear systems F(x) = 0 where the Jacobian 
matrix J(x) is symmetric and positive definite. Typical examples of this type 
of system come from minimization problems. Since J(xk) is symmetric and 
positive definite, incomplete Cholesky factorizations are natural preconditioners 
of the system (1.2). However, since we need to solve a sequence of systems of 
type (1.2), it is natural to modify the incomplete Cholesky preconditioner by 
some least-change secant formula. In this section we analyze the modification 
of a generic preconditioner by a BFGS-type formula. Other modifications may 
also be considered, such as PSB modifications or DFP structured modifications 
(see [12, 14, 7, 41]). 

Assume, as always, that F E C1 (Q), where Q is an open and convex set. 
Let C: Q -, R'nXn be a continuous function. Assume that linear systems whose 
matrix is C(x) are easy to solve. Assume that C(x) = Y(x)Y(x)T, where 
Y(x) is lower triangular and has a simple structure. The product Y(x)Y(x)T 
may be considered an approximation of the Cholesky factorization of J(x) . A 
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particular case is when C(x) is the matrix that defines some stationary linear 
iterative method, such as Jacobi or SOR (see [28, 22, etc.]). For example, the 
preconditioner C(x) induced by the Jacobi method is the diagonal of J(x). 

Below we define the main algorithm of this section. 

Algorithm 4.1. Let x0 E Q be a given initial approximation to the solution 
of (1.1) such that C(xo) is nonsingular, Eo E Rn x n , 0 < 6 < t < 1, 6,k E 

(0,6) for all k = 0, 1, 2, ... and limk---, k = 0. Given Xk, Ek such 
that Xk E Q and C(Xk) is nonsingular, the steps for obtaining Xk+1, Ek+1, 
k = 0, 1, 2, ..., are: 

Step 1. Define 

(4.1) SQ =-[C(Xk)1 + Ek]F(Xk). 

Step 2. If 

(4.2) IJ(xk)sQ + F(xk)l < 6IF(xk)l, 

define 
Sk = Sk 

and go to Step 4. 
Step 3. Find an increment Sk such that 

(4.3) IJ(xk)sk + F(Xk)l < 6kIF(Xk)l I 

Step 4. Define 

(4.4) Xk+1 =Xk+Sk 

Step 5. Define 

(4.5) Yk = F(Xk+l) - F(Xk) , 

(4.6) Sk = Sk-C(Xk+l) 1Yk. 

If Skyk < 0, set Ek+1 = Ek, else compute 

(4.7) Ek?1 = Ek + (s# - Ekyk)ST + Sk(S# - Ekyk)T _ (s# - Ekyk)TYksksT 

ST Yk (ST Yk )2 

Remarks. At Step 3, the increment Sk is calculated in an unspecified manner. 
However, the natural way to compute it is to use a sufficient number of steps 
of the Conjugate Gradient method, preconditioned by C(Xk)-I + Ek . In fact, 
following Algorithm 10.3.1 of [19], we observe that sQ = (C(Xk)1l + Ek)F(Xk) 
must be necessarily computed at the first step of the preconditioned CG al- 
gorithm if M = [C(xk)-l + Ek]-1 . Therefore, the work done at Step 1 of 
Algorithm 4.1 is incorporated naturally in the preconditioned CG procedure. 

The structured BFGS formula (4.7) is derived by requiring Ek+1 to be the 
closest symmetric matrix to Ek that satisfies the secant equation 

(C(Xk+1)' + Ek+1)Yk = Sk , 

in the weighted Frobenius norm defined by (4.13) below. For details, see, for 
example, [12, 14, 26]. 0 

Using the results of ??2 and 3, we prove the following convergence results for 
Algorithm 4. 1. 



694 J. M. MARTiNEZ 

Theorem 4.1. Suppose that Assumption 1 is satisfied. There exists e > 0 such 
that, if Ixo - x* I < , the sequence generated by Algorithm 4.1 converges to x* . 
Moreover, 

(4.8) IXk+I - X*|* < tlXk - X* 1 

for all k = O , 1,~ 2, . where Zlzl = IJ(x*)zl . 

Proof. This result is an application of Theorem 3.3 of [6]. O 

Lemma 4.1. Let F satisfy Assumption 1 and let J(x*) be symmetric and positive 
definite. Suppose that the sequence generated by Algorithm 4.1 converges to x* 
and that Xk :$ x* for all k = 0, 1, 2, .... There exists ko E N such that 
skTyk > 0 for all k > ko. So, for all k > ko, the matrix Ek+1 is computed using 
(4.7). 

Proof. Define 

(4.9) i=min 
T 

J(x*)co > 0 
9ERn (OTW 

Since Sk #? 0 for all k = 0, 1, 2, ..., we have, by (2.7), that 

SyT k sT[F(xk+l) - F(xk)] 

Sk Sk Sk Sk 

S ST[F(xk+1) - F(Xk) - J(x*)sk] sTJ(x* )sk k ~~~~+ T 
5kT5k 5k5k 

> - LISk 12 s(Xk, Xk+I) SkTJ(x*)Sk > T- -Li(xk, xk+l). 
SkSk SkSk 

So, for large enough k, we have skTyk > 0, as we wanted to prove. O 

Theorem 4.2. Let F satisfy Assumption 1, and let C(x*) be nonsingular. Sup- 
pose that the sequence generated by Algorithm 4.1 converges to x* and satisfies 
(4.8). There exist ko E N and A > 0 such that, if 

(4.10) IEk1-E*?<A 

for some k1 > ko, where 

(4.11) E = J(x*)-1 - C(x*)-l 

then convergence is superlinear and Sk = skQ for all k large enough. 

Proof. Define X = 1R'n,n . For x, z E Q we define 
1 

(4.12) H(x, z)= J(x+t(z-x))dt. 

Possibly restricting Q, we can assume, since J(x*) is positive definite, that 
H(x, z) is positive definite for all x, z E Q. Define 

(4.13) IIEIIxz = IIL(x, z)TEL(x, z)IIF, 

where L(x, z)L(x, z)T is the Cholesky factorization of H(x, z), and 

(4.14) IhElI = IILTEL* IIF, 
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where L.LT is the Cholesky factorization of J(x*) . Assumption 3 can be seen 
to hold, using the arguments in the proof of Theorem 4.3 of [26]. 

Define 

(4.15) V(x, z) = Sn{E E X I E[F(z)-F(x)] = z-x-C(z)-1[F(z)-F(x)]} 

where S is the subspace of symmetric matrices of RnXn. By Lemma 4.1 we 
can assume, without loss of generality, that s7yk > 0 for all k > 0. Thus, 
repeating the arguments of [26, pp. 150-151], we see that 

(4.16) Ek+I = Pk(Ek) 

for all k = 0, 1, 2, ..., where Pk is the projection operator on V(xk, xk+1) 
with respect to 11 Ilxkxk+- 

Finally, define 

(4.17) E(x, z)= /jJ(x + t(z - x)) dt C(z)-1. 

Obviously, E(x, z) E V(x, z), and (3.9) follows from (2.6) and Banach's 
lemma ([19, p. 59]). Therefore, Assumptions 2 and 3 hold for Algorithm 4.1. 

Define 

(4.18) (P(x, E) = (C(x)-Y +E)- 

and 

(4.19) D = {(x, E) E Q x X I C(x) and C(x)-l + E are nonsingular}. 

Clearly, (x*, E*) E D in this case. 
Define c5 as in Lemma 3.2. By (3.21), we have 

(4.20) IlEk+j -E* 11 <:: ||Ek -E* 11 + C5 lXk- X* I* 

for all k > 0, j = 0, 1, 2, .... 
Let 3, A1 >0 be such that 

(4.21) G={(x,E)EQxXXlIx-X**<E3, IIE-E*11<?A}cD. 

Let ko E N, A > 0 be such that 

(4.22) A + c5Ixko - x*I* < Al 

and 

(4.23) xko - x*|* < 83e- 

By (4.8), (4.10) and (4.20)-(4.23), (Xk, Ek) belongs to the compact set G for 
all k > k, . Clearly, IC(x)-I + El is bounded for (x, E) E G, and the desired 
result follows from Theorem 3.2. o 

Remark. Observe that the restriction (4.10) on some "initial" Ek does not have 
the same meaning as the constraint IIEo-E* I < 3 in the hypothesis of Theorem 
3.2 of [26]. The latter was a very severe restriction that guarantees that all the 
Ek's belong to a small neighborhood of E* where all the parameters generate 
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contractive mappings. In the case of (4.10) we only want to guarantee that 
deterioration is not sufficient to produce unbounded IBk I or IB,-?1 . 

5. CONCLUSIONS 
The computer time which corresponds to the resolution of a large-scale linear 

system of equations using a direct method is not negligible. Sometimes, the 
associated cost largely dominates the cost of computing the function and the 
derivatives. 

For this reason, traditional quasi-Newton methods like the sparse Broyden 
method ([2, 38]) tend to be rarely used because they need the same linear algebra 
work as Newton's method. However, in some quasi-Newton methods the com- 
puter time used to solve Bks = -F(x) is substantially less than the computer 
time needed to solve (1.2). These methods are still very useful. Essentially, 
these algorithms are low-rank modification methods (see [12]) and methods 
based on direct updating of factorizations ([8, 23, 24, 25, 42, 43, 20]). These 
"cheap linear algebra" quasi-Newton methods can be used as preconditioners 
when CG-type algorithms are applied to (1.2). Of course, it is not possible to 
claim that all these algorithms generate good preconditioners in practice for the 
inexact-Newton method. However, we proved in this paper that the updating 
schemes that fall under the Martinez theory ([26]) have very nice theoretical 
properties as inexact-Newton preconditioners. With this contribution, we sup- 
port the point of view that quasi-Newton and inexact-Newton methods are not 
competitors, but complement each other for solving large-scale nonlinear sys- 
tems. 

The idea of using secant modifications of classical preconditioners, like the 
one introduced in ?4, is promising because it tends to make the best possible use 
of available information at each iteration of the inexact-Newton method. The 
theory introduced in this paper encourages us to initiate a comprehensive set of 
experiments with the aim to discover the best updating schemes and to evaluate 
particular cases of this approach in practical large-scale problems. Computer 
implementations of Algorithm 2.1 will probably need suitable safeguards in or- 
der to keep IBk I and IB,-1 I bounded, since we cannot predict how far xo is 
from x* . A large initial error can, in theory, produce singular (or nearly singu- 
lar) preconditioners. Moreover, owing to poor initial estimates, a large number 
of iterations could be necessary to satisfy (2.2). Only computer experimentation 
can tell us if these are serious drawbacks. 
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